MAC-CPTM Situations Project

Situation 02: Parametric Drawings

Prepared at Penn State
Mid-Atlantic Center for Mathematics Teaching and Learning 01 June 2005 - Rose Zbiek
Edited at University of Georgia
Center for Proficiency in Teaching Mathematics
21 February 2007 - Eileen Murray

Prompt

This example, appearing in CAS-Intensive Mathematics (Heid and Zbiek, 2004) ${ }^{1}$, was inspired by a student mistakenly grabbing points representing both parameters (A and B in $f(x)$ $=A x+B$) and dragging them simultaneously (the difference in value between A and B stays constant). This generated a family of functions that coincided in one point. Interestingly, no matter how far apart A and B were initially, if grabbed and moved together, they always coincided on the line $\mathrm{x}=-1$.

Commentary

In this case, GSP was a vehicle that brought mathematical relationships to the fore. When one sees such a phenomenon, one can enhance their experience by noticing the potential for mathematics in the patterns that are seen.

Focus 1 will show how the graphical phenomenon can be explained using a symbolic proof. Focus 2 will then show the extension of the phenomenon to quadratic functions (which also appears in CAS-Intensive Mathematics). This focus will show how this can also extend to a polynomial of higher degree (which generated another interesting relationship along with its proof).

Mathematical Foci

Mathematical Focus 1

Graphical phenomenon can frequently be explained using symbolic proof.
Figure 1 displays a screen dump after A and B have been simultaneously dragged.

[^0]

Figure 1. Screen dump showing trace of $f(x)=A x+B$ after A and B have been dragged simultaneously.

Notice that the family of lines that appear intersect on the line $\mathrm{x}=-\mathbf{1}$. To explain why this will be the case for any value of A and B where their difference remains constant can be explained using the following symbolic proof:

Let $\mathrm{y}=\mathrm{Ax}+\mathrm{B}$ and suppose $\mathrm{A}-\mathrm{B}=\mathrm{k}$, a constant. Let $\mathrm{y}_{1}=\mathrm{A}_{1} \mathrm{x}+\mathrm{B}_{1}$ and $\mathrm{y}_{2}=\mathrm{A}_{2} \mathrm{x}+\mathrm{B}_{2}$ be two lines in this family. $A_{1}-B_{1}=k=A_{2}-B_{2} \Rightarrow A_{1}-A_{2}=B_{1}-B_{2}$. Thus, to determine the point of intersection, y_{1} is set equal to y_{2}. Therefore,

$$
\begin{aligned}
& A_{1} x+B_{1}=A_{2} x+B_{2} \\
& \left(A_{1}-A_{2}\right) x=B_{2}-B_{1} \\
& x=\frac{B_{2}-B_{1}}{A_{1}-A_{2}}=\frac{-\left(B_{1}-B_{2}\right)}{A_{1}-A_{2}}=-1
\end{aligned}
$$

Hence, and two lines in this family will intersect at the point $(-1, \mathrm{k})$.

Mathematical Focus 2

Many times phenomena that are observed for certain functions can be extended to other functions with similar properties, i.e. linear functions extended to polynomial functions with degree >1.

When looking at quadratic functions, additional assumptions must be made to investigate the phenomenon. In a quadratic function, there are three coefficients rather than two (like in the linear function). For example, if $y=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}$, there are three possibilities to consider. Either we hold C constant with $\mathrm{A}-\mathrm{B}=\mathrm{k}, \mathrm{B}$ constant with $\mathrm{A}-\mathrm{C}=\mathrm{k}$, or A constant with $\mathrm{B}-\mathrm{C}=$ k. In each of these cases, similar symbolic proofs as the one in Focus 1 can be worked and the following conclusions can be drawn:

1. If C is held constant, there will be two intersections at $(0, C)$ and $(-1, k+C)$.
2. If B is held constant, there will be no intersection because the equations reduce to $x^{2}=\mathbf{- 1}$.

3 . If A is held constant, there will be one intersection at $(-1, A-k)$

This idea can now be extended for polynomials of the $n^{\text {th }}$ degree. In order to do this extension, all but two coefficients are held constant and the remaining two have a constant difference. Consider the polynomial $\mathrm{y}=\mathrm{A}_{\mathrm{n}} \mathrm{X}^{\mathrm{n}}+\mathrm{A}_{\mathrm{n}-1} \mathrm{X}^{\mathrm{n}-1}+\mathrm{A}_{\mathrm{n}-2} \mathrm{X}^{\mathrm{n}-2}+\ldots+\mathrm{A}_{2} \mathrm{X}^{2}+\mathrm{A}_{1} \mathrm{x}+\mathrm{A}_{0}$. Choose 2 coefficients to vary, but keep their difference constant. All other coefficients will be held constant. Suppose $A_{j}-A_{i}=k, i<j$. If we have two polynomials in this family, we can determine where they will intersect by setting them equal to each other. Using a symbolic proof we see that the intersections will occur at the following points:

$$
\begin{aligned}
& x^{i}=0, y=A_{0} \\
& x^{j-i}=-1, y=A_{n}(-1)^{n}+A_{n-1}(-1)^{n-1}+\ldots+A_{0}
\end{aligned}
$$

However, depending on the values of i and j, these points may or may not be defined. Specifically, $x^{j-i}=-1$ will be defined as a real number only where $\mathrm{j}-\mathrm{i}$ is an odd number.

[^0]: ${ }^{1}$ Heid, M. K. \& Zbiek, R. M. (2004). The CAS-Intensive Mathematics Project. NSF Grant No. TPE 9618029

